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The vibrational predissociation rates of triatomic van der Waals complexes were investigated by a new,
computationally simple method. The method is based on three approximations: (a) metastable vibrationally
excited states of the complex are described by the vibrational self-consistent field (VSCF) approximation, (b)
the coupling among the rotational states of the dissociating diatomic fragment is treated by the infinite order
sudden (IOS) approximation, and (c) the vibrational transition that leads to dissociation is treated by the
distorted wave Born approximation (DWBA). The predissociation rates, the product rotational state
distributions, and the lifetimes of vibrationally excited states of He-ICl and He-I2 are all computed and are
in reasonable agreement with other theoretical and/or experimental results. The suggested VSCF-DWBA-
IOS scheme is found to be a very simple but efficient theoretical tool to investigate the dissociation dynamics
of van der Waals complexes.

I. Introduction

Van der Waals complexes, e.g., molecules weakly bound to
rare gas atoms, have attracted considerable attention, both
experimentally and theoretically.1-21 Techniques such as high-
resolution IR absorption spectroscopy, Fourier-transform infra-
red spectroscopy, and microwave spectroscopy provide a wealth
of information on the structure and the vibrational energy levels
of van der Waals complexes. In many weakly bound molecules
the deviation from harmonic behavior is very large, even in the
vibrational ground state. It remains a challenge to obtain
accurate energy level structure for these molecules from the
potential energy functions and to interpret the level structure in
terms of the vibrational dynamics involved.

Many theoretical approaches have been applied to study the
vibrational states of van der Waals complexes. Our aim here
is to test an approximate scheme that scales only linearly with
molecular size, so that it can be applied efficiently to large
systems. The vibrational self-consistent field model (VSCF)
has this convenient scaling property. The VSCF and related
configuration interaction (CI) methods are widely used in
electronic structure calculations, but vibrational structure cal-
culations using VSCF and CI are not frequently reported. In
the VSCF method,8,12,22-27 each vibrational mode is described
as moving in an effective field that is the average of the full
potential over the motions of all the other modes. Each
vibrational mode is described by wave functions called modal
wave functions corresponding to orbitals in electronic structure
theory. In the VSCF method, correlation between modes is not
included. Therefore, the validity and accuracy of the ap-

proximation depend on the choice of coordinates used in the
calculations because each modal wave function is dictated by
the coordinates chosen. The correlation part missing in the
VSCF approximation is incorporated in the CI method. In CI
the true vibrational wave functions are expressed as a linear
combination of configurations, each of which is a product of
modal wave functions. The CI matrix is diagonalized to obtain
vibrational energies and wave functions; these become exact
(on the assumed potential energy surface) for a complete
expansion.

Extensive theoretical and experimental efforts have been made
to understand the dynamics of triatomic systems, including
vibrational predissociation. Triatomic van der Waals complexes
provide ideal model systems for predissociation studies because
the electronic states involved are well-studied, the potential
energy surfaces are well-characterized, and the relevant quanti-
ties (such as transition dipole moments) are known. In the
present work we develop a new but simple method to investigate
the vibrational predissociation process. We treat the initial
(metastable) state of the complex in the VSCF approximation;
the predissociation dynamics is simplified by applying the
infinite order sudden (IOS) approximation to the coupling among
the rotational states of the molecular fragment in the course of
the dissociation, and finally the distorted wave Born approxima-
tion (DWBA) is used to express the decay rate of the initial
state into products. Both the sudden and distorted wave
approximations are well-known from scattering theory,28 and
as we shall see, physical considerations justify the present
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application to vibrational predissociation for the systems and
conditions that are commonly of interest.

This new scheme is extremely simple, so we have performed
some test calculations for He-ICl and He-I2 to assess its
accuracy. In these calculations, the VSCF approximation is
tested by comparison with vibrational energy levels calculated
using other methods, and then the IOS and DWBA approxima-
tions are tested by calculating dissociation rates and comparing
with accurate values from other theory and/or experiment.

The present VSCF-IOS-DWBA method has some similarity
to a method that was used previously in studies of atom-
molecule inelastic collisions.29,30 In this study, the IOS method
was used to describe rotational coupling and DWBA was used
to determine scattering cross sections. Another related study
done previously by some of us20 was concerned with collinear
models of triatomic predissociation dynamics. Here the VSCF
method was used to describe the initial states and DWBA for
the predissociation rate.

In section II a brief summary of our proposed method, i.e.,
VSCF-DWBA-IOS, is provided. Section III explains the
potential energy functions and numerical aspects of computa-
tions. The calculational results and discussion are provided in
section IV, and some conclusions are given in section V.

II. Method

The present study extends our earlier method for studying
triatomic systems.20 Jacobi coordinates are chosen to describe
the triatomic system, AB-C, where C is a rare gas atom and
AB is a covalently bonded diatom. The HamiltonianH for the
AB-C system is written as, in atomic units,

wherer is the internuclear distance between atoms A and B,R
is the distance between the center of mass of the diatom AB
and atom C, andθ is the angle between two vectors associated
with r andR. µ1 is the reduced mass of atoms A and B, andµ2

is the reduced mass of diatom AB and atom C, i.e.,µ1 ) mAmB/
(mA + mB) andµ2 ) mC(mA + mB)/(mA + mB + mC). j and l
are two angular momenta associated withr andR, respectively.
For J ) j + l ) 0, we have

V(r, R, θ) is the potential energy function. The range ofθ is
defined from 0 toπ, and the range ofr andR is from 0 to∞.
The Schro¨dinger equation is

where E is the vibrational energy andΦ(r, R, θ) is the
vibrational wave function. If we replaceΦ(r, R, θ) with Ψ(r,
R, θ)/rR, the reduced equation is

whereΨ(r, R, θ) is normalized such that∫∫∫|Ψ(r, R, θ)|2 sin
θ dθ dR dr ) 1. The reduced Hamiltonian is

HereV1(r) is the potential energy function for diatom AB and
V2(r, R, θ) is the remaining potential, i.e.,V(r, R, θ) ) V1(r) +
V2(r, R, θ).

Equation 1 is solved for bound states using VSCF and for
dissociation using IOS. If the bound state solution is designated
as Ψν1ν2ν3

j (r, R, θ) and the dissociating state solution as
Ψν′1j

f (r, R, θ), DWBA yields the dissociation rateR as

νi (i ) 1, 2, 3) are the vibrational quantum numbers of the
triatom AB-C, ν1′ is the quantum number associated with AB
molecular vibration, andj is the quantum number associated
with AB molecular rotation. The correlation potential Vc and
the density of statesF(E) will be defined later.

A. VSCF Approximation. In VSCF each vibrational mode
is described as moving in an effective field, being the average
of the full potential over the motions of all the other modes.
Each vibrational mode consists of wave functions called modal
wave functions corresponding to orbitals in electronic structure
theory. Since each modal is associated with a formally separate
Hamiltonian, the VSCF method clearly involves an assumption
of mutual separability of vibrational modes. However, the
VSCF modes are different from normal modes. While normal
modes are assumed to be independent of each other, in VSCF
the effect of other modes is incorporated in an average sense.

The outline of the VSCF procedure is as follows. We assume
that the bound state wave function can be approximated as20,22

and

The quantum numberν1 corresponds to the vibrational motion
of the diatom AB,ν2 is the quantum number for the van der
Waals bond stretching motion, andν3 is the corresponding
bending motion. Then the Hamiltonian is partitioned as and

the modal wave functionsæ satisfy

whereεν1, εν2, andεν3 are modal eigenvalues,ν1, ν2, andν3 are
vibrational quantum numbers associated with coordinatesr, R,
andθ, respectively, and

H(r, R, θ) ) -1

2µ1r
2

∂

∂r
r2 ∂

∂r
- 1

2µ2R
2

∂

∂R(R2 ∂

∂R) + j2

2µ1r
2

+

l2

2µ2R
2

+ V(r, R, θ) (1)

j2 ) l2 ) -1
sin θ

∂

∂θ(sin θ ∂

∂θ) (2)

H(r, R, θ) Φ(r, R, θ) ) EΦ(r, R, θ) (3)

H(r, R, θ) Ψ(r, R, θ) ) EΨ(r, R, θ) (4)

H(r, R, θ) ) -1
2µ1

∂
2

∂r2
- 1

2µ2

∂
2

∂R2
+ j2

2µ1r
2

+ l2

2µ2R
2

+ V1(r) +

V2(r, R, θ) (5)

R(ν1ν2ν3 f ν′1j) )
2π
p

F(E)|〈Ψν′1j
f (r, R, θ)|Vc|Ψν1ν2ν3

i (r, R, θ)〉|2 (6)

Ψν1ν2ν3

i (r, R, θ) ≈ Ψν1ν2ν3

SCF (r, R, θ) ) æν1

1 (r) æν2

2 (R) æν3

3 (θ) (7)

HSCF(r, R, θ) Ψν1ν2ν3

SCF (r, R, θ) ) Eν1ν2ν3

SCF Ψν1ν2ν3

SCF (r, R, θ) (8)

HSCF(r, R, θ) ) h1(r) + h2(R) + h3(θ) (9)

h1(r) æν1

1 (r) ) εν1

1 æν1

1 (r) (10a)

h2(R) æν2

2 (R) ) εν2

2 æν2

2 (R) (10b)

h3(θ) æν3

3 (θ) ) εν3

3 æν3

3 (θ) (10c)

h1(r) ) - 1
2µ1

∂
2

∂r2
+ 1

2µ1r
2

〈j2〉θ + V1(r) + 〈V2(r, R, θ)〉R,θ

(11a)
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The subscripts after each set of brackets〈〉 indicate that the
quantity is an integral in the subscripted variable over the modal
functions. The total VSCF energy for the (ν1, ν2, ν3) state is

where the correction energyEcor is

The VSCF equations are iteratively solved to obtain converged
modal eigenfunctions and eigenenergies for a prechosen refer-
ence (ν1, ν2, ν3) bound state.

Instead of basis function representations, we used numerical
grid representations for modal functions. As we see in eqs 11a
and 11b, the differential equations involving ther and R
coordinates can be easily solved. However, theθ coordinate
in eq 11c imposes a small problem in numerical representation.
To obtain numerical representations foræν3

3 (θ), we adopt the
discrete variable representation (DVR) proposed by Light and
Bacic.21,31,32 The DVR is introduced in order to simplify the
approximate evaluation and manipulation of the Hamiltonian
operator. In particular, the kinetic energy operator, easily
evaluated in the variational basis representation, is transformed
to the DVR, whereas the remaining potential operators, which
are difficult to evaluate in the basis representation, are ap-
proximated directly in DVR. In DVR a unitary transformation
matrix T is defined asTløR ) ((2l + 1)/2)1/2ωøR

1/2Pl(øR) where
the square ofωøR

1/2 is a numerical weight,øR ) cosθR is a grid
point in angleθR, andPl is a Legendre polynomial. Then the
potentialV(r, R, θ) is approximated to be diagonal (unchanged)
in thisøR basis, butj2 andl2 are represented asT+j2T andT+l2T,
respectively, in thisøR basis. The row dimension (l) of the T
matrix is equal to the number of basis functions whenæν3

3 (θ) is
expanded in terms of Legendre functions, and the column
dimension (øR) of T is equal to the number of grid points when
æν3

3 (θ) is expressed in a numerical grid representation. These
two dimensions are the same in standard DVR calculations.

Equations 11a, 11b, and 11c are all transformed by theT
matrix to give new equations that are defined at each grid point.
In this representation, we calculate a numerical value of
æν1

1 (r), æν2

2 (R), andæν3

3 (θ) at each grid point, sayrR, RR, andθR,
respectively. The finite difference method is then used to solve
the differential equations numerically.

B. IOS Approximation. We turn to the determination of
the final state wave function,Ψν′1j

f (r, R, θ), whereν1′ and j
indicate vibrational and rotational quantum number of the
product diatom AB, respectively. Here we assume that vibration
may be separated from the other variables using

whereæν1′
d (r) is a vibrational wave function of the stateν1′ of

diatom AB, which is a solution of the vibrational Schro¨dinger
equation of diatom AB

The continuum wave functionψj
E(R, θ) consists of two

partssone is the rotational (j) motion of the diatom and the
other is the relative translational motion of the diatom with
respect to atom C. The Schro¨dinger equation forψj

E(R, θ) is

When the rotational motion is much slower than the translational
motion during the dissociation, we can reasonably utilize the
infinite order sudden (IOS) approximation. Under IOS, we set
j2 ) jh(jh + 1) ) l2, where the latter equality arises because total
angular momentum is fixed as zero. Then the scattering
equation we obtain is one-dimensional, i.e.

HereB is the rotational constant of the diatom for vibrational
stateν1′ (the third term in eq 15),Vh2(R; θ) is the averagedV2

integral overæν1′
d (r) (the fourth term in eq 15),E is the energy

which isEν1ν2ν3

i - Eν1′
d , andæj

E(R; θ) parametrically depends on
the angleθ. ψj

E(R, θ) is here approximated as

wherePj(θ) is a Legendre function. In the present study we
chosejh ) j, wherej is the final rotational quantum number.

Equation 16 is solved at various angles,θ, using a fifth-order
Adams-Moulton algorithm with numerical grid representations
of the wave functions. The number of angles chosen is equal
to the number of grids used in solving eq 10c. The derived
asymptotic form ofæj

E(R; θ) is

whereδ is a phase shift andk is a wave vector, i.e., momentum
p ) pk. Since we calculate a real solutionæj,real

E (R; θ) of eq
16, we need a conversion factorQ, where æj

E(R; θ) )
æj,real

E (R; θ)Q, to give the right boundary conditions. The real
wave function we calculate has the asymptotic form

whereA(θ) andB(θ) are determined by evaluating eq 19 and
its derivative at the asymptotic limit ofR. After matching eq
19 to eq 18, we obtain the conversion factorQ and, at a given
R andθ

The final state wave functionψν1′j
f (r, R, θ) therefore obtained

from eqs 13, 17, and 20 is
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∂
2

∂R2
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R
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Eν1ν2ν3

i ≈ Eν1ν2ν3

SCF + Ecor ) εν1

1 + εν2
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3 + Ecor (12a)

Ecor ) -〈 1

2µ1r
2〉

r

〈j2〉θ - 〈 1

2µ2R
2〉

R

〈l2〉θ - 2〈V2(r, R, θ)〉r,R,θ

(12b)

Ψν1′j
f (r, R, θ) ≈ æν1′

d (r) ψj
E(R, θ) (13)

[- 1
2µ1

∂
2

∂r2
+ V1(r)]æν1′

d (r) ) Eν1′
d æν1′

d (r) (14)

[- 1
2µ2

∂
2

∂R2
+ 1

2µ2R
2
l2 + 〈æν1′

d (r)| 1

2µ1r
2|æν1′

d (r)〉j2 +

〈æν1′
d (r)|V2(r, R, θ)|æν1′

d (r)〉 - (Eν1ν2ν3

i - Eν1′
d )]ψj

E(R, θ) ) 0

(15)

[- 1
2µ2

∂
2

∂R2
+ 1

2µ2R
2
jh( jh + 1) + Bjh( jh + 1) +

Vh2(R; θ) - E]æj
E(R; θ) ) 0 (16)

ψj
E(R, θ) ≈ x(2j + 1)/2æj

E(R; θ) Pj(θ) (17)

æj
E(R;θ) f k-1[e-i(kR-( jh/2)π) - ei(kR-( jh/2)π)e2iδ] (18)

æj,real
E (R; θ) f k-1[A(θ) sin(kR- jh

2
π) + B(θ) cos(kR- jh

2
π)]

(19)

æj
E(R; θ) ) 2[B(θ) + iA(θ)]-1æj,real

E (R; θ) (20)
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C. Lifetime from DWBA. Now we want to compute the
lifetime of the vibrationally excited triatomic van der Waals
complex, which eventually dissociates into atom and diatom
fragments. The dissociation process is assumed to be due to
mode-mode correlation that causes energy transfer (and pre-
dissociation) from vibrational motion of the triatom. The
correlation potential,Vc, is given by

Note that our final wave function is three-dimensional and
eq 18 is normalized to a unit incoming flux. Then the density
of the final states at energyE, F(E), is

Then the DWBA form of the predissociation rateR from the
(ν1ν2ν3) initial triatomic state to the (ν1′j) final diatomic state
given in eq 6), using eqs 7 and 10, can be rewritten as20

or numerically

where V is an asymptotic velocity andæj,real
E (R; θ) ) k-1

æj,real
E,N (r; θ). The half-width,Γ, is

and the predissociation lifetime of the (ν1ν2ν3) state of AB-C,
τ is

III. Computational Details

We have utilized atom-atom pairwise Morse type potential
energy functions, where the whole potential is assumed to be a

sum of diatomic potentials, i.e., A-B, A-C, and B-C. The
relevant Morse parameters,De (dissociation energy),â (expo-
nential factor), andre (equilibrium distance) are listed in Table
1. For the He-ICl complex, we tested two kinds of Morse
potential parameters. One is the atom-atom Morse potential
parameters used by Gray et al.13 (we call this the A type
potential). The other is the potential parameters used by
Waterland et al.15 (B type potential). For He-I2, Gray’s
potential parameters are used.19 The electronic state of I2 is
the excited B state in which the I2 has symmetry3Π0

+. We
studied theν ) 2-5 states of He-ICl and theν ) 12-26 states
of He-I2. The electronic state of ICl is the excited B state.
The atomic masses of He, Cl, and I are 7291, 63 746, and
231 332 au, respectively. In numerical integrations of the VSCF
equations, the starting point, the end point, and grid size are
repeatedly tested so that the optimum number of points are
determined. For the internuclear distance of AB, i.e., ther-axis,
integration is performed from 4.5 to 9.0 au with a grid of 0.002
au for He-ICl, and from 4.8 to 13.0 au with a grid of 0.002 au
for He-I2, respectively. Integration for theR-axis is from 4.5
to 30.0 au with a grid of 0.02 au for He-ICl, and from 6.0 to
30.0 au with a grid of 0.05 au for He-I2, respectively. For all
complexes, Legendre functions withl ) 0 to 40 are used forθ
axis basis functions. This corresponds to 41 grid points in the
DVR scheme. What we have investigated are the vibrational
energy levels (ν1ν2ν3) of the bound AB-C complex, the
dissociation rates from AB-C (ν1ν2ν3) to AB(ν1′ ) ν1 - 1, j)
+ C, the rotational distribution of AB(ν1′, j), and, consequently,
lifetimes of AB-C (ν1, ν2, ν3). We have assumed the strong
propensity rule∆V1 ) -1, so that all∆V1 > -1 transitions are
neglected.

IV. Results and Discussion

The VSCF calculated vibrational energy levels of He-ICl
and He-I2 are presented in Tables 2 and 3 and compared with
earlier theoretical results based on the same potentials (A type
with ref 13 and B type with ref 15) and with experiment. The
vibrational energy levels of ICl and I2 are also listed to clearly
show the dissociation energy of the process, e.g., He-ICl (ν1

) 2, 0, 0)f He + ICl (ν1′ ) 1, j). We see that the (2, 0, 0)
energies are in good agreement with previous theoretical results
in both tables. This shows that the VSCF method is useful for
determining vibrational energy levels for van der Waals
complexes. However, the excited bend states in Table 2 are
not as close. Fortunately, these excited states are not the primary
concern of this study, as the only experimental results are for
ground-state bends.

The vibrational energy levels of diatomic ICl and I2 are
exactly calculated, so we do not include comparisons with other
results. The predissociation process of interest in this work is
AB - C(ν1, ν2, ν3) f AB(ν1 - 1, j) + C. Therefore for this
process the total energy for dissociation is the vibrational energy

ψν1′j
f (r, R, θ) )

æν1′
d (r)[B(θ) + iA(θ)]-1æj,real

E (R; θ)x(2j + 1)/2Pj(θ) (21)

Vc ) H - HSCF) 1

2µ1r
2
j2 - 〈 1

2µ1r
2〉

r

j2 - 1

2µ1r
2
〈j2〉θ +

1

2µ2R
2
l2 - 〈 1

2µ2R
2〉

R

l2 - 1

2µ2R
2
〈l2〉θ + V2(r, R, θ) -

〈V2(r, R, θ)〉R,θ - 〈V2(r, R, θ)〉r,θ - 〈V2(r, R, θ)〉r,R - Ecor

(22)

F(E) )
µ2p

(2πp)3
(23)

R(ν1ν2ν3 f ν1′j) ) 2j + 1

2π2p2V
|〈[B(θ) + iA(θ)]-1Pj(θ) ×

æj,real
E,N (R; θ) æν1′

d (r)|Vc(r, R, θ)|æν1

1 (r) æν2

2 (R) æν3

3 (θ)〉|2 (24)

R(ν1ν2ν3 f ν1′j) )

2j + 1

2π2p2V
|∑

θR

ωθR
[B(θR) + iA(θR)]-1Πj(θR) æν3

3 (θR) ×

∑
RR

ωRR
æj,real

E,N (RR; θR)æν2

2 (RR) ∑
rR

ωrR
æν1′

d (rR) æν1

1 (rR) Vc

(rR, RR, θR)|2 (25)

Γ(ν1ν2ν3 f ν1′j) ) pR(ν1ν2ν3 f ν1′j)/2 (26a)

Γ(ν1ν2ν3 f ν1′) ) ∑
j

Γ(ν1ν2ν3 f ν1′j) (26b)

τ(ν1ν2ν3) ) p

2Γ(ν1ν2ν3 f ν1′)
(27)

TABLE 1: Pairwise Morse Potential Function Parameters

complex atom pair De/cm-1 â/au-1 re/au

He-ICl
A type I-Cl 1270.4 2.0955 5.02667

He-Ia 18 0.6033 7.559
He-Cla 14 0.8467 6.8030

B type I-Cl 1270.4 2.0955 5.02667
He-Ib 16.5 0.79377 7.5589
He-Clb 16.0 0.79377 7.5589

He-I2 I-I 4600.19 0.9583 5.6955
He-Ic 15.4 0.695 7.5589

a Reference 13.b Reference 15.c Reference 19.
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difference between AB-C(ν1, ν2, ν3) and AB(ν1 - 1). A
portion of the total energy is consumed to break the van der
Waals AB-C bond, and the remaining energy is, after dis-
sociation, distributed to the rotational energy of AB and relative
kinetic energy of AB against C.

Table 4 presents the predissociation lifetimes of He-ICl
(ν1()2, 3, or 5), 0, 0), where the only dissociation process
considered is He-ICl(ν1, 0, 0) f He + ICl(ν1 - 1, j). When
the vibrational quantum number of ICl is smaller by 2 or more
than the correspondingν1 of He-ICl, the predissociation rate
is very small. As expected, the lifetime of He-ICl (ν1 ) 2, 0,
0) is longest and that ofν1 ) 5 is shortest. This is due to the

fact that the energy difference between He-ICl (ν1, 0, 0) and
ICl (ν1 - 1, j) is largest whenν1 ) 2 and smallest whenν1 )
5. Depending on the potential used (A or B type), the calculated
lifetimes vary 2-fold. The measured lifetime of He-ICl (2, 0,
0) is in the range of 0.5-2.0 ns.10 Our value is 2.37 ns for the
A type potential and 1.42 ns for B type, while Waterland et
al.’s theoretical value is 2.18 ns.15 These theoretical values are
in reasonable agreement with each other. Waterland et al.’s
calculations are more accurate than ours, but their method is
far more complex.

The rotational state distributions of the fragment ICl from
He-ICl are presented in Figures1 and 2. Note that we show B
type results in Figure 1 and A type in Figure 2, so as to make
comparisons with other theory for the same potential. For the
He-ICl(2, 0, 0) f He + ICl(1, j′), the rotational distribution
of ICl oscillates with the rotational quantum numberj of ICl
whenj is less than 10. Atj ) 7, a prominent peak is noted. At
large j’s, another broad peak is found aroundj ) 15. This
feature of the distribution is also found in experiments.16 The
rotational distribution profile of Waterland et al.’s15 theoretical
work is very similar to ours in Figure 1, but the magnitude of

TABLE 2: VSCF Vibrational Energy Levels (cm-1) of He-ICl and ICl

this work others

(ν1, ν2, ν3) A type B type theoretical exptl

HeICl
(0, 0, 0) (-13.9734)a (-12.7130)a

(2, 0, 0) 384.9063 (-13.9212) 384.9278 (-12.6393) -13.331b

(2, 0, 1) 389.8243 (-9.0033) 391.0189 (-6.5482) -7.738b

(2, 0, 2) 391.8766 (-6.9509) 393.2348 (-4.3324) -6.294b

(2, 0, 3) 394.6519 (-4.1756) 396.1263 (-1.4408) -5.215b

(2, 0, 4) 398.1617 (-0.6658) not bound -3.725b

(2, 0, 5) not bound not bound -1.504b

(3, 0, 0) 548.4346 (-13.8903) 548.4654 (-12.5991) -14.6c -15d

(5, 0, 0) 817.6534 (-13.8140) 817.7086 (-12.4985)

ICl
ν1 Eν1 ν1 Eν1

0 e 3 548.3515
2 384.8541 5 817.4940

a The numbers in parentheses are the energy difference between He-ICl(ν1, ν2, ν3) and ICl(ν1). b Reference 15. The energy is the difference
between He-ICl(ν1, ν2, ν3) and ICl(ν1). c Reference 13. The energy is the difference between He-ICl(ν1, ν2, ν3) and IC l(ν1). d Reference 36.e The
ground vibrational energy is -1162.1418 cm-1 with respect to the I+ Cl separate atom limit.

TABLE 3: VSCF Vibrational Energy Levels (cm-1) of He-I 2 and I2

He-I2

(ν1, ν2, ν3) Eν1ν2ν3

SCF (ν1, ν2, ν3) Eν1ν2ν3

SCF

(0, 0, 0) (-13.8377)a (20, 0, 0) 2152.8359
(-13.8381)b (20, 0, 1) 2159.1886
(-13.7481)c (20, 0, 2) 2162.7280
(-13.4)d (20, 0, 3) 2163.6930

(12, 0, 0) 1369.7972 (20, 1, 0) 2165.6360
(14, 0, 0) 1576.0096 (21, 0, 0) 2242.8762
(16, 0, 0) 1775.2544 (22, 0, 0) 2331.1743
(17, 0, 0) 1872.2624 (25, 0, 0) 2585.6169
(18, 0, 0) 1967.5289 (26, 0, 0) 2666.9471
(19, 0, 0) 2061.0533

I2

ν1 Eν1 ν1 Eν1

0 e 19 2074.6201
12 1383.4766 20 2166.3848
14 1589.6590 21 2256.4069
16 1788.8711 22 2344.6865
17 1885.8633 25 2599.0607
18 1981.1130 26 2680.3803

a VSCF value (this work). This energy is the difference between He-I2(0, 0, 0) and I2(0). b VSCF value (reference 27).c CI value (reference 27).
d CI value (reference 26).e The ground vibrational state energy is-4537.1084 cm-1 with respect to the I+ I separated atom limit.

TABLE 4: Predissociation Lifetimes (ns) for He-ICl ( ν1, 0,
0) f He + ICl ( ν1 - 1)

this work

ν1 A type B type theoretical exptl

2 2.37 1.42 2.18a <2.0b

3 1.23 0.72 1.00c 0.55d

5 0.51 0.24

a Reference 15.b Reference 10.c Reference 16.d Reference 13.
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their oscillations is somewhat larger than ours. Averaging the
oscillation at smallj, this distribution process looks bimodal.
As seen in Figure 2, the dissociation process of He-ICl(3, 0,
0) f He + ICl(2, j) is also bimodal. The theoretical results in
Figure 2 are from Gray and Wozny13 and show oscillations that
are similar to what we find.

Though there are still discrepancies between our theoretical
distributions and those of other theories in Figures 1 and 2, the
overall trends are similar. This shows that the approximations
we have made (SCF, DWBA, IOS) are not too serious for He-
ICl. Differences between theory and experiment are probably
due to inaccuracy of the potential functions used in the
theoretical calculations.

Since the predissociation rates for the various excited states
of He-I2 have been reported,17,19,33we have investigated the
predissociation dynamics of many excited states of the He-I2

complex. The levels of He-I2(ν1, 0, 0) studied are fromν1 )
12 to ν1 ) 26. Using the strong propensity rule forν1(HeI2)
f (ν1 - 1)(I2), we neglect lifetime contributions from other
choices of ∆ν1. The vibrational predissociation rates and
corresponding lifetimes of the bound state of the He-I2 complex
are compiled in Table 5. The lifetime of the lower vibrational
states (ν1) of He-I2 is longer than the higher ones. From the
comparison with experimental measurements,33 we see that our
theoretical rates or lifetimes are in good agreement (10%) with
experiment. The predissociation rates are plotted against initial
vibrational levels in Figure 3. The calculated rates are lower
than the experimental ones for high vibrational states.

The rotational distribution of the fragment I2 is presented in
Figures 4, 5, and 6. There is no particular reason why only the
three states, i.e.,ν1 ) 20, 25, and 26, are presented. They are
simply some examples for presentation. Since I2 is a homo-
nuclear diatomic molecule, the distribution cannot generally be
bimodal. Unfortunately experimental measurements of the
distribution have not been reported, to our knowledge. But
comparisons with other various theoretical calculations11,17,19

indicate that our distributions are reasonable.
The main purpose of this work is to test a simple theoretical

tool for investigating the vibrational predissociation process of

Figure 1. Rotational distribution of ICl(1,j) fragment from predis-
sociation of He-ICl (2, 0, 0).

Figure 2. Rotational distribution of ICl(2,j) fragment from predis-
sociation of He-ICl (3, 0, 0).

TABLE 5: Total Vibrational Predissociation Rates and
Lifetimes for He-I 2

rate/109 s-1 lifetime/ps

ν1 this work exptla this work exptla

12 5.5 183
14 6.7 150
16 8.0 125
17 8.7 7.8( 0.2 115 128( 2
18 9.4 8.7( 0.7 106 115( 9
19 10.2 9.9( 0.4 98 101( 4
20 11.0 10.6( 0.5 91 94( 4
21 11.9 12.2( 0.6 84 82( 4
22 12.6 13.3( 1.0 79 75( 6
23 13.7 15.6( 1.2 73 65( 5
24 14.5 69
25 15.6 64
26 16.7 60

a Reference 33.

Figure 3. Vibrational predissociation rates of He-I2(ν, 0, 0).

Figure 4. Rotational distribution of I2(19, j) fragment from predisso-
ciation of He-I2 (20, 0, 0).
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van der Waals complexes having a weak bond. The VSCF
approximation used to locate the resonance energies of vibra-
tionally excited van der Waals complexes is found to be accurate
enough as shown in Table 2. We have not investigated
dissociation of the bending excited vibrational states of the
complexes. This will be studied in the near future. The
distorted wave Born approximation is found to be valid at least
for the systems we studied. Our calculated rates or lifetimes
are in good agreement with experiments33 as shown in Table 5.
As presented in Figures 1, 2, and 4-6, the rotational state
distributions of the diatomic fragments are also investigated to
test the validity of IOS more stringently. IOS is found to be in
reasonable agreement with other theoretical or experimental
results, suggesting that the IOS approximation is reasonable.
However one should be cautious that the IOS approximation
may be valid for systems like He-ICl or He-I2 but may not
be so for other systems.

V. Conclusion

In this article we have presented a new and simple method
for calculating the rates of vibrational predissociation in triatomic
van der Waals complexes. This VSCF-DWBA-IOS method
combines together three well-known approximations: the self-
consistent field method for calculating the vibrational energy
levels and wave functions of the initial metastable state, the
infinite order sudden approximation for treating diatomic
rotation in the final continuum state, and the distorted wave

approximation for calculating the dissociation rates. Since the
VSCF corresponds to an effective averaged potential, the
correlation potential of eq 22 is the only one causing temporal
evolution of the VSCF states. Therefore we might expect its
approximate treatment, using DWBA, to be quite accurate (for
similar reasons that Mo¨ller-Plesset perturbation theory is useful
to improve VSCF energetics).34,35

We have presented applications of this theory to vibrational
predissociation in the He-ICl and He-I2 complexes. Both
dissociation rates and product state distributions have been
compared to the results from other theory (typically from
accurate coupled channel or wave packet calculations) and from
experiment. The agreement with both is generally quite good,
which indicates that the combination of these three approxima-
tions is effective in describing these systems.

Calculations of vibrational predissociation rates for triatomic
clusters, though not computationally trivial, are certainly feasible
today by numerically exact quantum-mechanical algorithms. The
usefulness of the present method lies, however, in the fact that
it can be extended to much larger systems, while retaining its
computational simplicity. For such larger systems, exact
quantum calculations are not feasible at present. Consider, for
example, the predissociation process: M-AB(V) f M +
AB(V - 1), where AB is a diatomic chromophore and M is a
polyatomic molecule or a cluster to which AB is weakly bound.
An extension of our method to this process seems straightfor-
ward. There are some complications not present in the case
where M is an atom; for example, the final states of M will
have to be described by VSCF if M is a polyatomic. This leads
to a DWBA rate expression that involves multidimensional
integrals. However, it seems that the required computational
effort should be manageable for M having at least several atoms.
The present study is therefore an encouraging test, showing that
computational treatment of vibrational predissociation based on
VSCF, IOS, and DWBA and thus application to larger systems
seem desirable.
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